Live2D Cubism Core
APl Reference

Version r15
Last Update 2025/10/30

Changelog

Copyright © 2025 Live2D Inc. all rights reserved.

Update day

Version

Update Type

Content

2018/06/14

r2

translation

translation to English from Japanese

2018/07/20

r3

Corrected

Corrected errors of snippet

Corrected vague expression

Corrected omissions of letter in snippet

Added more detailed explanation about
rendering method of mask and how to access it
Corrected mistake that const is included in
notation of arguments.

2019/02/26

r5

Added

Added "File version of moc3"

Added "Getting the parent parts of the parts"
Added the API description of
csmGetlLatestMocVersion

Added the API description of
csmGetMocVersion

Added the API description of
csmGetPartParentPartindices

2019/08/01

ré

Added

Added a constant stands for moc3 file version
Added a snippet since the ConstantFlag
element has added

Added a description of the Inverted Mask flag
Added a description of the Inverted Mask
function

Added an item stands for the available version
of each API

Fixed

Typo fixes

2019/09/04

r7

Fixed

Adjusted notation of "Cubism Core" and
"Cubism SDK"

2021/03/01

r8

Fixed

Added an explanation for the existence of
Drawables with a count of 0 in
csmGetDrawablelndexCounts.

Fixed

Added explanation of the case where
csmGetDrawablelndices does not store valid
addresses.

2022/05/19

r9

Added

Added explanations of the function to obtain
parameter keys.

Added

Added explanations of the multiply color and
the screen colors.

Copyright © 2025 Live2D Inc. all rights reserved.

2022/07/07 | r10 Added Added description of the function to get
parameter types.

Added Added description of the function to get parent
parts of ArtMeshes.

Added Updated obtained versions in "File version of
moc3" and "csmGetMocVersion".

2022/03/10 | r11 Added Added description of the function to validate
MOCS3.

2023/08/17 | r12 Added Added information on Cubism 5.

2025/05/15 | r13 Added Added description of the function to get and set
the repeat value set for the parameters.

2025/08/26 | r14 Added Added description of the function to get the
offscreen set for the parts.

Added Added description of the function to get the
blend mode value set for the ArtMesh and
offscreen.

Changed Changed csmGetDrawableRenderOrders to
csmGetRenderOrders.

2025/10/30 | r15 Added Added description of the array structure
obtained from csmGetRenderOrders in
"DrawOrder and RenderOrder".

2 Highlighted sentences mean the latest modification and addition.

Copyright © 2025 Live2D Inc. all rights reserved.

Contents

Overall
Regarding this document
Functional classification of Core and Framework
-What is Core?
How to render a model.
-Data for rendering provided by Core

- Cycles of Rendering and behavior of the Core

How to use the API for each scene

How to obtain the information related to the Core.
-How to obtain the version information of the Core.
-Output log of the Core.

Loading files
-How to load a Moc3 file and to expand up to the csmModel object
- Check moc3 consistency
-File version of moc3
*Rel mM r csmModel
- Get rendering size of model
-Loading and placement Drawable
- Gets the parent parts of Drawable
- Gets the information of offscreen

Manipulate the model
- Acquiring each element of the parameter
- Gets the parent parts of parts
- Operating parameters
- Operating parts opacity.
- Applying the operation to the model.

-Reset of DynamicFlag
Renderin

-Necessary processes for rendering

- Specification of rendering
Confirmation of Element with ConstantFlags
Formula for color composition
Culling direction and Drawablelndices
Specification of Clipping

- Confirmation of updated information
*Obtaining th ted vertex information
- Sorting drawing order

-DrawOrder and RenderOrder

Copyright © 2025 Live2D Inc. all rights reserved.

- Apply mask on rendering.
- Apply the multiply color and screen color to the shader

- Getting the parameter keys

*Determine whether repeat is set for a parameter

- Gets whether offscreen is set for the part
- Gets the blend mode value

Individual APls
Naming rule for the APls.
*SOA structure
-InPlace

csmGetVersion
csmGetLatestMocVersion

csmGetMocVersion
csmGetLogFunction

csmSetlLogFunction
csmReviveMocInPlace

csmGetSizeofModel
csminitializeModellnPlace

csmUpdateModel
csmReadCanvasinfo

csmGetRenderOrders
csmGetParameterCount

csmGetParameterlds
csmGetParameterTypes
csmGetParameterMinimumValues

csmGetParameterMaximumValues

csmGetParameterDefaultValues
csmGetParameterValues

csmGetParameterRepeats
csmGetParameterKeyCounts

csmGetParameterKeyValues
csmGetPartCount
csmGetPartlds
csmGetPartOpacities

csmGetPartParentPartIndices
csmGetPartOffscreenindices

csmGetDrawableCount
csmGetDrawablelds
csmGetDrawableConstantFlags
csmGetDrawableDynamicFlags
csmGetDrawableTexturelndices

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableDrawOrders
csmGetDrawableRenderOrders

mGetDrawabl iti
csmGetDrawableMaskCounts
csmGetDrawableMasks
csmGetDrawableVertexCounts

mGetDrawableVertexPosition
csmGetDrawableVertexUvs

csmGetDrawablelndexCounts
csmGetDrawablelndices
mResetDrawableDynamicFl

csmGetDrawableMultipleColors

csmGetDrawableScreenColors
csmGetDrawableParentPartIndices
csmGetDrawableBlendModes
csmGetOffscreenCount

csmGetOffscreenBlendModes

csmGetOffscreenOpacities
csmGetOffscreenOwnerlndices

csmGetOffscreenMultiplyColors

csmGetOffscreenScreenColors
csmGetOffscreenMaskCounts
csmGetOffscreenMasks
csmGetOffscreenConstantFlags

csmHasMocConsistency

Copyright © 2025 Live2D Inc. all rights reserved.

Overall

Regarding this document

In this document, you can learn functions of Live2D Cubism Core (Core) in Live2D Cubism
SDK, how to use it and specification of its API

Target

- Users of Live2D Cubism SDK

- Those who are considering embedding wrapper to call Core from other languages such as
Java and Python

- Those who are considering embedding into other programs or platform such as game
engines.

Functional classification of Core and Framework

The following chart shows the relationship between the Application and Core and
Framework, and their roles.
Core is called from both Application and Framework.

Library Memory Resorce Model
Management Management Management Management
Application
f_/"' . l.
Userdata userdata3 .]
Management Play Motion Physics
.motion3
Model Data 1 physics3 _ _
Management | _ Motion Blending
N json Parser -/
Opacity Calculation)
Vertex Calculation Renderer
Model __/'
Framework

Copyright © 2025 Live2D Inc. all rights reserved.

-What is Core?

Core is a library including API necessary for handling models (.moc3 file) created with
Live2D Cubism Editor. Its features are explained in the following.

- The APl is coded by C language.

- The Core doesn't keep and discard Memory. It is necessary to keep the specified amount of
Memory on users' side and provide it to the Core for its request.

- The core doesn't equip rendering function. The role of the Core is to calculate vertex
information according to the parameters of a model. Applications or programs obtain
calculated vertex information and information necessary for rendering (UV, opacity etc) from
Core. Also, it doesn't needed to implement the rendering function for the Core since
Framework provides reference implementation.

Due to the features written above, the core has high portability. Also it is not dependent on
platforms.

How to render a model.

Different from Live2D Cubism 2 SDK, rendering function was separated from the Core after
Live2D Cubism 3 SDK.

The advantage of this change is that it is possible for developers to embed Cubism into
various environments.

The rendering function is provided in Framework as a reference implementation for popular
use cases. Even in an environment that the function has not been provided, it is possible to
have the function by obtaining 3D primitives information such as vertex information with the
API of the Core and the rendering APIs specified for environment.

- Data for rendering provided by Core

The data that Core provides about models is classified into three major categories:
Parameter, Part, and Drawable.

Among them, Drawable is a collection of data necessary for rendering.

Vertex information provided by Drawable is two-dimensional data which consists of X and Y.
The starting point of coordinates for each element is bottom left. Also, the surface of the
polygon is counter-clockwise.

The data is in accordance with the coordinate system of OpenGL.

Copyright © 2025 Live2D Inc. all rights reserved.

- Cycles of Rendering and behavior of the Core

The following chart shows the flow of processing for loading a model file (.moc3).

App Core Framework

Loading .moc3

1

Getting csmMoc object —bv: csmReviveMoclnPlace :!
4 Y
Getting csmModel memory size = csmGetSizeofModel /I

v

Allocate memory for csmModle

Generating and initializing
| csmModel " _ :
. J Loading Moc3 file and expnding it to Model’

__ R

' ™
—> csminitializeModellnPlace
\ J

Generationg Renderer

" csmGetDrawableCount N
4 csmGetDrawableConstantFlags
f csmGetDrawableTexturelndices
‘ csmGetDrawablsVertexCounts \ i i
|‘ csmGetDrawableVertexPositions | Getting Drawable information "-.‘
\ csmGetDrawableVertexUvs | h 9 /
csmGetDrawableIndexCounts [
"\ csmGetDrawablelndices
csmGetDrawableMultiplyColors
. csmGetDrawableScreenColors 7
\“\.,_,_ _— -

¥

Register to Renderer

:Loading Drawable and placement

Yellow node shows Application, purple node means a segment Framework should process.
Nodes with arrow to the Core indicate calls to API of the Core.

Copyright © 2025 Live2D Inc. all rights reserved.

The following chart shows the refresh cycle of rendering.

App Core Framework
Starting rendering loop
//”‘ csmGetParameterCount
/ csmGetParameterlds N
[csmGetParameterMinimumValues Bhysics
% csmGetParameterMaximumValues
5 csmGetParameterDefaultValues.
N _ csmGetParameterValues
Manipulation by application o

4 csmGetPartCount)
csmGetPartids |
\ csmGetPartOpacities 4

\ Playing - Motion Mecanism /

Manipulation of Model

Reset of DynamicFlag

T
i csmResetDrawableDynamicFlags |
& 4

:

Reflection of manipulation

e csmUpdateModel 4
l | Applying manioulation to Drawable
Updating vertex information ‘l!

Fic B
| csmGetD DynamicFlags ; Getting DyamicFlag

//'—' B

(csmGetD Opacitie: \ / Getting updated vertex
csmGetDrawableVertexPositions /' infromation

- =
| csmGetRenderOrders \/H— Getting order of Rendering
b , \

Applying updated vertex information to Renderer

!

Rendering a model

(esmGetD faskCounts '\

P N
| csmGetDrawableMasks Getting mask information /‘
e — R

‘f Processing Mask ‘\
Clipping '

o / \
\cjsmGe’tDrawableMuﬁiplyCoIogiK—[Getting multiply color)

f/ csmGetDrawableScreenColors)(—1
b - X

—

Getting screen color

‘.’\ Setting colors

Multiply color, Screen color

- \ Renderin(
Rendering < =

Same as the first chart, yellow node shows Application, purple node means a segment
Framework should process. Nodes with arrow to the Core indicate calls to API of the Core.

Copyright © 2025 Live2D Inc. all rights reserved.

The sections surrounded by solid lines are simplified explanation .

10

Copyright © 2025 Live2D Inc. all rights reserved.

How to use the API for each scene

How to obtain the information related to the Core.

How to obtain the version information of the Core.

Version information of the Core currently used can be obtained

shippet:
csmVersion version = csmGetVersion();

Version notation consists of three parts: MAJOR, MINOR, and PATCH.
Operation rule for each part is shown below.

Major version (1 byte)
It is incremented when backward compatibility is lost with model data dew to some reason
such as major version up of Cubism Editor.

Minor version (1 byte)
It is incremented when function was added with backward compatibility kept.

Patch number (2 byte)
It is incremented when the defect is fixed. If the major version or minor version is changed,
the patch number is reset to 0.

Ox 00 00 0000
Major Minor Patch

The version consists of 4 bytes. By treating it as an unsigned integer, the new Core version
always means a larger number.

Link to the used API

csmGetVersion

11

Copyright © 2025 Live2D Inc. all rights reserved.

- Output log of the Core.

In order to output the log of the Core, the function to output log can be preset.
For example, if an error occurs when using the Core API, a log gets output through the

preset function.

The function to output log that can be preset is the following.

shippet:
/** Log handler.
* @param message Null-terminated string message to log.
*/
typedef void (*csmLogFunction)(const char* message);

Example:

snippet:
void logPrint(const char* message)
{
printf("[LOG] %s", message);
}

/I Set Cubism log handler.
csmSetLogFunction(logPrint);

Link to the used API

csmSetLogFunction
csmGetLogFunction

Copyright © 2025 Live2D Inc. all rights reserved.

Loading files

-How to load a Moc3 file and to expand up to the
csmModel object

Model information is stored in moc3. It needs to be expanded up to csmModel object to be
handled in Core .

After expanding it to csmModel, APl needs to be operated with csmModel as the key.
Memory area to generate object of csmMoc and csmModel needs to have address
aligned by specified size.

Alignment size is written in the include.

Loading moc3

snippet:
[** Alignment size definition * /

enum
{
/** Necessary alignment for mocs (in bytes). */
csmAlignofMoc = 64,
I** Necessary alignment for models (in bytes). */
csmAlignofModel = 16

|»

void* mocMemory;
unsigned int mocSize;

/I Load file to memory address aligned as 64byte.
/[The file size of .moc3 is stored in mocSize.
mocMemory = ReadBlobAligned("Koharu/Koharu.moc3", csmAlignofMoc, &mocSize);

csmMoc* moc = csmReviveMocInPlace(mocMemory, mocSize);

Create a model from moc 3:

snippet:
unsigned int modelSize = csmGetSizeofModel(moc);

/I The model needs to be aligned as 16 bytes
void** modelMemory = AllocateAligned(modelSize, csmAlignofModel);

/I Create an instance of the model
csmModel* model = csminitializeModellnPlace(moc, modelMemory, modelSize);

13

Copyright © 2025 Live2D Inc. all rights reserved.

-Check moc3 consistency

Using csmHasMocConsistency, you can check the consistency of the .moc3 file to be loaded
to ensure that it is not malformed.
If the consistency of the .moc3 file cannot be verified, return 0.

If an unspecified .moc3 file is expected to be loaded, it is recommended to check its
consistency before creating the csmMoc object with csminitializeModellnPlace.
However, please note that checking consistency may affect performance.

snipet:
void* mocMemory;
unsigned int mocSize;

/I Load file to memory address aligned as 64byte.
/[The file size of . moc3 is stored in mocSize.
mocMemory = ReadBlobAligned("Koharu/Koharu.moc3", csmAlignofMoc, &mocSize);

/I Check moc3 consistency.
int consistency = csmHasMocConsistency(mocMemory, mocSize);

if(lconsistency)

{

/I Do not process if consistency cannot be verified.
return;

}

/I Create an instance of the model
csmModel* model = csminitializeModellnPlace(moc, modelMemory, modelSize);

Link to the used API

csmHasMocConsistency

14

Copyright © 2025 Live2D Inc. all rights reserved.

File version of moc3

moc3 file format had a version up. New moc3 file may not be read in the old Core.
Core has the compatibility to the moc3 file of the following corresponding version.
csmGetLatestMocVersion shows the latest file version that Core can process.

/** moc3 file format version. */

enum

{
/** unknown */
csmMocVersion_Unknown =0,
/** moc3 file version 3.0.00 - 3.2.07 */
csmMocVersion_30 =1,
/** moc3 file version 3.3.00 - 3.3.03 ¥/
csmMocVersion_33 = 2,
/** moc3 file version 4.0.00 - 4.1.05 */
csmMocVersion 40 = 3,
/** moc3 file version 4.2.00 - 4.2.02 */
csmMocVersion 42 =4,
/** moc3 file version 5.0.00 - */
csmMocVersion 50 =5

5

/** moc3 version identifier. */
typedef unsigned int csmMocVersion;

/**
* Gets Moc file supported latest version.

*

*/
csmApi csmMocVersion csmGetLatestMocVersion();

/**
* Gets Moc file format version.

*

* @param address Address of moc.
* @param size Size of moc (in bytes).

* @return csmMocVersion
*/

* @return csmMocVersion (Moc file latest format version).

csmApi csmMocVersion csmGetMocVersion(const void* address, const unsigned int size);

csmGetMocVersion shows the file version of moc3.

If it is not moc3 file, it returns csmMocVersion_Unknown = 0.
The execution order of csmGetMocVersion is not tied to the timing of the

csmReviveMoclInPlace.

To check whether the fire can be loaded by comparing the got file version and Core version.

15

Copyright © 2025 Live2D Inc. all rights reserved.

To expand to the model while examining the file version of moc3.

shippet:

void* mocMemory;
unsigned int mocSize;

/I Load file to memory address alined as 64byte.
/[The file size of .moc3 is stored in mocSize.
mocMemory = ReadBlobAligned("Koharu/Koharu.moc3", csmAlignofMoc, &mocSize);

const csmMocVersion fileVersion = csmGetMocVersion(mocMemory, mocSize);

if((csmGetLatestMocVersion() < fileVersion) ||
(fileVersion==0))
{

Log("can’t load moc3 file");
return;

}

csmMoc* moc = csmReviveMoclnPlace(mocMemory, mocSize);
unsigned int modelSize = csmGetSizeofModel(moc);

/I The model needs to be aligned as 16 bytes
void** modelMemory = AllocateAligned(modelSize, csmAlignofModel);

/I Create an instance of the model
csmModel* model = csminitializeModellnPlace(moc, modelMemory, modelSize);

If you attempt to load the new files with older versions of the Core, the return value of
csmReviveMoclInPlace will be NULL.

If the Core version from csmGetVersion() is 03.03.0000(50528256) or later, the message
below will be output to the Core logs.

csmReviveMoclInPlace is failed. The Core unsupport later than moc3 ver:2. This moc3 ver is 3.

Please do use the latest Core.

Copyright © 2025 Live2D Inc. all rights reserved.

Release csmMoc or csmModel

csmReviveMoclInPlace, csminitializeModellnPlace needs to be operated only within the input
memory space.

The returned address is always the one in the prepared memory area.

csmMoc and csmModel exist in the memory area used for input in csmReviveMoclInPlace,
csminitializeModellnPlace. Accordingly the input memory area needs to be kept.

Also, csmMoc needs to be kept until all corresponding csmModels gets discarded.

This is because csmModel refers to csmMoc.

Release memory targeting not addresses of csmMoc or csmModel but its of mocMemory or
modelMemory when csmMoc and csmModel. needs to be discarded.

17

Copyright © 2025 Live2D Inc. all rights reserved.

The following chart shows the flow about securing and releasing memory.

......... # Argument

@ Loading .moc3 mocMemory

—— Output

mocMemory
v
@ csmReviveMocInPlace : csmMoc '
v
csmGetSizeofModel
® Allocate memory for modelMemory|
csmModle
modelMemory
v v
Load and @ csminitializeModellnPlace
generate

U se - > R o
(csmGet~)
......................... modelMemory
Release v
Destruction of csmModel

Releasing of modelMemory

mocMemory

,,,,,,,,,,,,,,,,,,,,,,,

Destruction of csmModel
Releasing of modelMemory

Link to the used API

csmReviveMocInPlace
csmGetSizeofModel
csminitializeModellnPlace

Copyright © 2025 Live2D Inc. all rights reserved.

- Get rendering size of model

canvas size displayed as work area in Editor, center position and unit position that can be
specified when model file is exported can be obtained.

[save settings >
Mumber of Pixels

Width 2876 |pixel

Heizht 4175 | pixel
Placement

L]

Cancel

[export settings >

Export Yersion |f FE 0 Compatible

[JExport Hidden Part

[]Expart Guide Image

[Expart hidden érthesh

[Export Physics settines file (physicsd.json)
Export UserData filefuserdatad. json)

Center of model X 0.50 L

Center of model Y

!

et center

ok]

Canvas scale (Unit) 1.00

Canvas height (Unit) °

pixelsPerlnit 247600 5

Export Tarzet |[1/1 { 2048 px) -

Cancel

19

Copyright © 2025 Live2D Inc. all rights reserved.

Access to canvas information of model.

snippet:
csmVector2 size;
csmVector2 origin;
float pixelsPerUnit;

csmReadCanvasinfo(Sample.Model, &size, &origin, &pixelsPerUnit);

printf("size.X=%5.1f",size.X); // size.X = 2400.0 = (3) * (5)
printf("size.Y=%5.1f",size.Y); // size.Y = 3000.0 = (4) * (5)
printf("origin.X=%5.1f",origin.X); // origin.X = 1200.0 = (1) * (5)
printf("origin.Y=%5.1f",origin.Y); // origin.Y = 1500.0 = (2) * (5)
printf("pixelsPerUnit=%5.1f",pixelsPerUnit); // pixelsPerUnit = 2400.0 =(5)

Link to the used API

csmReadCanvaslinfo

-Loading and placement Drawable

Drawable means an unit of drawing in the Core.

Drawable corresponds to an art mesh on the Editor.

Drawable has the necessary information to draw.

There are static information that does not change and dynamic information that changes by
changing the value of the parameter in a data loaded from moc3. Static information can be
cached in the application side.

The group having csmGet [XXXX] Count is structure of array (SOA). The number of arrays
can be obtained by Count.

An array obtained with an APl such as csmGetDrawableTexturelndices is the starting
address of the array.

Arrays in each API have the same sequences. When it is necessary to look for a particular
parameter, the parameter needs to be searched in the array obtained by
csmGetDrawablelds.

Parameters, parts, etc are described the same manner.

20

Copyright © 2025 Live2D Inc. all rights reserved.

The following chart shows the structure of the Drawable list.
When csmUpdateModel is executed, The blue API shows a static item. Also the Orange API

shows a dynamic item.

csmModel

Drawable list

— *»‘csmGelDrawableCnum

) The number of arrays

> }csmGelDrawab!eDrawO(d ers

0 1 2 3 4 5
> csmGetDrawablelds > I
> csmGetDrawableConstantFlags > |
»}csmGelDrawabieDynamicF\ags > I Texture number in
-‘csmGelDrawabieTexmreIndic.es >{ 0 0 1 2 0 1_| .model3.json
\ﬁ¥\:;$<t=_$<————v texture_00.png
~

~———— texture_01.png
o ——

—— texture_02.png
[700;/:500 | 300 | 800 1200 650 |

The number of arrays of Mask

>i‘csmGe|RenderOrders »' 4 6 1 5 0 3 2 7 9) ‘
— -—’lcsmGelDrawableOpaciﬁes > I /

b‘mmGelDrawabieMaskCounts + 1 0 '3 ,2 I "“J

'>‘meelDrambleMasks I S~ Offscreen

> csmGetDrawableVertexCounts

— 7’; csmGetDrawableVertexPositions

»csmGetDrawableVertexUvs

|

o

o+ |
B_
}4__
il

©
-

== ﬁ‘csmGe(Drawable IndexCounts ——|

—*/csmGetDrawableMultiplyColors

I~ »1 csmGetDrawableScreenColors

|
T @ ! i Ehiﬁ

A

~ & m.ch‘m|~1 TS

R =
olmw
]

@

o

i

> csmGetD rtindice:

>

T

The number
of arrarys

In loading Drawable, preparation for attribute of the render such as registration to the
graphics API or generation structure for drawing order sorting will be getting done.

21

Copyright © 2025 Live2D Inc. all rights reserved.

Conversion from Drawable SOA to AOS structure

snippet:

/I Initialization

drawableCount= csmGetDrawableCount(model);

drawables = Allocate(sizeof(Drawable) * drawableCount);

texturelndices = csmGetDrawableTexturelndices(model);
constantFlags = csmGetDrawableConstantFlags(model);

vertexCounts = csmGetDrawableVertexCounts(model);
vertexPositons = csmGetDrawableVertexPositions(model);
vertexUvs = csmGetDrawableVertexUvs(model);
indexCounts = csmGetDrawablelndexCounts(model);

vertexindices = csmGetDrawablelndices(model);

ids = csmGetDrawablelds(model);
opacities = csmGetDrawableOpacities(model);
drawOrders = csmGetDrawableDrawOrders(model);

renderOrders = csmGetRenderOrders(model);
dynamicFlags = csmGetDrawableDynamicFlags(model);

maskCounts = csmGetDrawableMaskCounts(model);
masks = csmGetDrawableMasks(model);

multiplyColors = csmGetDrawableMultiplyColors(model);
screenColors = csmGetDrawableScreenColors(model);

const blendModes = Core::csmGetDrawableBlendModes(model);

/I Initialize static drawable fields.
for (d = 0; d < drawableCount; ++d)

{

drawables[d]. Texturelndex = texturelndices]d];

csmBlendMode blendMode;
blendMode.SetBlendMode(blendModes[d]);

if ((constantFlags[d] & csmBlendAdditive) == csmBlendAdditive)

drawables[d].BlendMode = csmAdditiveBlending;
}

{

drawables[d].BlendMode = csmMultiplicativeBlending;

}

else

{

drawables[d].BlendMode = csmNormalBlending;

else if ((constantFlags[d] & csmBlendMultiplicative) == csmBlendMultiplicative)

22

Copyright © 2025 Live2D Inc. all rights reserved.

}

drawables|[d].IsDoubleSided =

(constantFlags[d] & csmisDoubleSided) == csmisDoubleSided;
drawables[d].IsInvertedMask =

(constantFlags[d] & csmisInvertedMask) == csmisinvertedMask;
drawables[d].VertexCount = vertexCounts[d];
drawables[d].VertexPositions = Allocate(sizeof(Vector3) * vertexCounts[d]);
drawables[d].VertexUvs = Allocate(sizeof(Vector2) * vertexCounts[d]);

/I Both VertexPositions and VertexUvs show informatin two-dimension.
/I vertexCounts shows the number of vertices, different from indices.
for (i = 0; i < vertexCounts[d]; ++i)

{
drawables[d].VertexPositions[i].x = vertexPositons[d][i].X;
drawables[d].VertexPositions[i].y = vertexPositons[d][i].Y;
/I Note that there is no Vertex Position but x and y
drawables[d].VertexPositions[i].z = 0;
drawables[d].VertexUvsJi].x = vertexUvs[d][i]. X;
drawables[d].VertexUvsJi].y = vertexUvs[d][i].Y;
}
/I vertexIndices [d] are all triangular notation indexCounts [d] always gets a multiple number of 3.
drawables[d].IndexCount = indexCounts[d];
drawables[d].Indices = vertexindices[d]; // Got as a single array

/I Register values such as VertexPositions, VertexUvs, vertexIndices, etc. in the graphics API
drawables[d].Mesh = MakeMesh(drawables[d].VertexCount,
drawables[d].VertexPositions,
drawables[d].VertexUvs,
drawables[d].IndexCount,
drawables[d].Indices);

/I Access to other Drawable elements
drawables[d].ID = ids[d];
drawables[d].DrawOrder = drawOrders[d];

/I The following three items are important on rendering.
drawables[d].Opacity =~ = opacities[d];
drawables[d].RenderOrder = renderOrders[d];
drawables[d].DynamicFlag = dynamicFlags[d];

drawables[d].MaskCount = maskCounts[d];
drawables[d].Masks = Allocate(sizeof(int) * maskCounts[d]);
for (m = 0; m < maskCounts[d]; ++m)

{

drawables[d].Masks[m] = masks[d][m];

/I Numbers in masks are index of Drawable

23

Copyright © 2025 Live2D Inc. all rights reserved.

drawables[d].MaskLinks = &drawables[(masks[d][m])];

24

Copyright © 2025 Live2D Inc. all rights reserved.

Vertex X,Y obtained by csmGetDrawableVertexPositions influenced PixelsPerUnit of canvas

setting on export from Cubism Editor for embedding.
The value of X and Y are shown as a unit. The value can be cal calculated by the following
formula.

E‘i Export settings *

Export Yersion

[]Export Hidden Part

[Expart Guide Image

[JExport hidden Arthesh

[Expart Phwsics settings file (physics3.ison)
Expart UserData filefuserdatal.j=on)

Center of model ¥

Center of model ¥

b

Zet center

3
Canvas scale (Unit)

Carmvas heizht (Unit) o
pixelsPerUnit 2976.00 5

Expart Tarzet |[1/1 { 2048 px) v

Cancel

X = (localX /[5]) — (1] * [3D
Y = ([2] * [4D — (localY/[5])

Vertex information whose aspect ratio has been kept is saved.
Even if the vertex is beyond the boundary It'll be saved as it is.
For more details, please refer to “Area of DrawableVertexPotions”

25

https://docs.live2d.com/en/cubism-sdk-manual/drawablevertexpositions/

Copyright © 2025 Live2D Inc. all rights reserved.

Link to the used API

csmGetDrawableCount
csmGetDrawablelds

csmGetDrawableConstantFlags

csmGetDrawableDynamicFlags
csmGetDrawableTexturelndices

csmGetDrawableDrawOrders
csmGetDrawableRenderOrders
csmGetDrawableOpacities
csmGetDrawableMaskCounts
csmGetDrawableMasks
csmGetDrawableVertexCounts

csmGetDrawableVertexPositions

csmGetDrawableVertexUvs
csmGetDrawablelndexCounts
csmGetDrawablelndices
csmGetRenderOrders

26

Copyright © 2025 Live2D Inc. all rights reserved.

- Gets the parent parts of Drawable

Parts are made of tree structure.
This tree structure is created by the operation of the editor.
csmModel even holds the information of the structure that is generated from moc3.

The results of csmGetDrawableParentPartindices shows the parent of Drawables by index in

array.
When the parent number indicates the -1, it indicates that the parent is the Root.

snippet:

/init

partlds =csmGetPartlds(model);

drawableCount = csmGetDrawableCount(model);
drawableParentPartIndices = csmGetDrawableParentPartindices(model);
drawablelds = csmGetDrawablelds(model);

/I If drawableParentindex = -1, parent is empty.
/I If drawableParentindex> = 0, the value of parentPartindices is the Index of the parent.
for (inti = 0; i < drawableCount; ++i)

{
if(drawableParentPartindices[i] == -1)
{
printf("drawableParentPartIndices[%d]:%s does not have a parent part.", i, drawablelds]i]);
}
else
{

printf("drawableParentPartIndices[%d]:Parent part of %s is %s.", i, drawablelds]i],
partlds[drawableParentPartindices]i]]);

}

}

Link to the used API

csmGetDrawableParentPartindices

27

Copyright © 2025 Live2D Inc. all rights reserved.

- Gets whether offscreen is set for the part

The ArtMeshes in parts with offscreen settings are drawn offscreen, and the result is
displayed as a single object on the screen.

This prevents the overlapping areas of multiple ArtMeshes in the same part from seeing through when
the part's opacity is set semi-transparent.

Using csmGetPartOffscreenindices, you can check whether offscreen is set for the part.

snippet:

for(csmInt32 i = 0; i < partCount; ++i)
{
csmint32 offscreenindex = Core::csmGetPartOffscreenindices(_model)[i];
if (offscreenindex != CubismNolIndex_Offscreen)
{
printf("%d : Offscreen is set.", i);
}
}

Link to the used API

csmGetPartOffscreenlndices

28

Copyright © 2025 Live2D Inc. all rights reserved.

- Gets the blend mode value

Use csmGetDrawableBlendModes and csmGetOffscreenBlendModes to get the blend mode

of the ArtMesh and offscreen.
There are two types of blend modes: color blend and alpha blend. The color blend information is
stored in the lowest byte, and the alpha blend information is stored in the second lowest byte.

shippet:

/* Gets the blend mode of the ArtMesh */
const csmint32* drawableBlendModes = Core::csmGetDrawableBlendModes(_model);
csmint32 drawableBlendMode = drawableBlendModes[drawablelndex];

/* Color blend of ArtMesh */

csmint32 drawableColorBlendType = drawableBlendMode & OxFF;

/* Alpha blend of ArtMesh */

csmint32 drawableAlphaBlendType = (drawableBlendMode >> 8) & OxFF;

/* Gets the blend mode of offscreen */
const csmint32* offscreenBlendModes = Core::csmGetOffscreenBlendModes(_model);
csmint32 offscreenBlendMode = offscreenBlendModes|offscreenindex];

/* Color blend of offscreen */

csmint32 offscreenColorBlendType = offscreenBlendMode & OxFF;

/* Alpha blend of offscreen */

csmint32 drawableAlphaBlendType = (offscreenBlendMode >> 8) & OxFF;

Link to the used API

csmGetPartOffscreenlindices

29

Copyright © 2025 Live2D Inc. all rights reserved.

Manipulate the model

- Acquiring each element of the parameter

It is necessary to understand each element of the parameter to manipulate the model.

The following 5 things are the elements.
-ID

*Present value

*Maximum value

*Minimum value

- Initial value

Model

Parameter list

‘——P‘csmGetParameterCOU nt

l

The number of array

|
|

II__"I=--'I=-'-'I=--'I=__"I:“'1I
‘——V[csmGetParameterlds]—“ i oLl oL H il :
1 1 [N (1T 13 13 |
I Iy [| | L I 1
\ 1 L] L] M LI I T
— > ini I |] | 1 I
[csmGetParameterMmmum‘v’alues]—>: -|:| :-U : :-l:l :_U : : -I..-.I ! : _|:|:
O 1.0y -0 .0 .0 3.0 g

L~ LI =~ L — LI — L —— L —
- = i 0 =y =% I3 Iy =S Ty
csmGetParameterMaximumValues Q) by L)) Ay Wy
[B LN B S O e LN s BL N B L Y B .
X »lcsmGetParameterDefaultValues ": 1= “8 I'% =2 i =2
- ’|(’D I|(D LN} I I|(.D I|(’D 1
B~~~ -~~~
Y ALY LAY ALY ALY ALY B
X »|lcsmGetParameterValues T L R ||h—$ I = I'_I‘l =3 1
|O:| \:lla_"'l_e.“'\:l—l_:lc-}-!:
I Iy [| | L I 1
I | N | N 1] 1 1
1 M LI LN LI I T
1 P|csmGetParameterTypes }—N Iy U] T I I I
: — -—- - - — :

30

Copyright © 2025 Live2D Inc. all rights reserved.

Access to the elements of each parameter

snippet:
parameterCount = csmGetParameterCount(model);
parameterlds = csmGetParameterlds(model);
parameterValues = csmGetParameterValues(model);
parameterMaximumValues = csmGetParameterMaximumValues(model);
parameterMinimumValues = csmGetParameterMinimumValues(model);
parameterDefaultValues = csmGetParameterDefaultValues(model);
targetnum = -1;

for(i = 0; i < parameterCount ;++i)

{
if(stremp("ParamMouthOpenY",parameterlds]i]) == 0)
{
targetnum =i;
break;
}
}
//In case that the desired ID could n't be found ID
if(targetnum == -1)
{
return;
}

/I The minimum value, maximum value, initial value of "ParamMouthOpenY" parameter of the model is exported.
// min:0.0 max:1.0 default:0.0
printf("min:%3.1f max:%3.1f default:%3.1f", parameterMinimumValues[targetnum]
, parameterMaximumValues[targetnum]
, parameterDefaultValues[targetnum]);

Although movement manipulation is not directly involved, it is also possible to get the types
set for the parameters of Blend Shapes etc.
Getting types set for each parameter

shipt:
/** Parameter types. */
enum
{
/** Normal Parameter. */
csmParameterType _Normal = 0,

/** Parameter for blend shape. */
csmParameterType_BlendShape = 1

h

/** Parameter type. */
typedef int csmParameterType;

31

Copyright © 2025 Live2D Inc. all rights reserved.

parameterCount = csmGetParameterCount(model);
parameterlds = csmGetParameterlds(model);
parameterTypes = csmGetParameterTypes(model);

for(i = 0; i < parameterCount ;++i)
{

switch(parameterTypes]i])

{

case csmParameterType_Normal :
printf("%s : Normal\n”, parameterlds]i]);
break;

case csmParameterType_BlendShape :
printf("%s : BlendShape\n”, parameterlds]i]);
break;

}
}

Link to the used API

csmGetParameterCount
csmGetParameterlds
csmGetParameterValues
csmGetParameterMaximumValues
csmGetParameterMinimumValues
csmGetParameterDefaultValues

csmGetParameterTypes

32

Copyright © 2025 Live2D Inc. all rights reserved.

- Getting the parent parts of parts

Part Project

% © P
®a0© =
o {3 Head 2
© w0 Ha i rFront
(o] W Hair Front 1 700
o N Hair Front 2 700
Lo Hair Fromt 1 Mowvement
o Hair Front 2 Movement
Lo Hair Front 1 Deformer XY
(o] Hair Front 2 Deformer XY
~ Pt Faccd A Pfeee 7

Parts are made of tree structure.

This tree structure is created by the operation of the editor.

csmModel even holds the information of the structure that is generated from moc3.

The results of csmGetPartParentPartindices shows the parent of parts by index in array.
When the parent number indicates the -1, it indicates that the parent is the Root.

snippet:
/I Getting the ID list of parts.
const char** partlds =csmGetPartlds(model);

/I Getting the parent of the index list of parts.
const int* parentPartindices =csmGetPartParentPartIndices(model);

/I If partParentindex = -1, parent is empty.
/I If partParentindex> = 0, the value of parentPartindices is the Index of the parent.
for (inti = 0; i < partCount; ++i)
{
if(partParentindex[i] == -1)
{
printf("partParentindex[%d]:%s does not have a parent part.",i,partlds][i]);

}
else
{
printf("partParentindex[%d]:Parent part of %s is %s.",i,partlds[i],partlds[parentPartindices]i]]);
}
}

Opacity operations to the parent part also applies to the opacity of the child.

Link to the used API

csmGetPartParentPartindices

33

Copyright © 2025 Live2D Inc. all rights reserved.

- Operating parameters

In the operation to the Cubism model, operation of the parameter is reflected by
acquiring the address of the array of parameters and writing the value.

It is clamped from the minimum value to the maximum value of the parameter when
csmUpdateModel () is called.
If the repeat setting is made for the parameter, it will not be clamped.

snippet:

I
parameterlds = csmGetParameterlds(model);
parameterValues = csmGetParameterValues(model);
parameterDefaultValues = csmGetParameterDefaultValues(model);

/[Scan array position corresponding to target ID
targetindex = -1;

for(i = 0; i < parameterCount ;++i)

{
if(stremp("ParamMouthOpenY",parameterlds|i]) == 0)

{
targetindex = i;
break;

}
}

//In case that the desired ID could n't be found ID
if(targetindex == -1)
{

return;

}

/Multiply the difference from reference value by the specified magnification ratio from the parameter.
parameterValues[targetindex] =
(value - parameterDefaultValues[targetindex]) * multipleValues[targetindex] +
parameterDefaultValues[targetindex];

Link to the used API

csmGetParameterValues
csmGetParameterDefaultValues

Copyright © 2025 Live2D Inc. all rights reserved.

- Operating parts opacity.

Operation of parts opacity can be done by the same way as operation of a parameter.

It is reflected by acquiring the address of the array and writing the value to that

memory.

Itis clamped in the range of 0.0 to 1.0 by the processing of csmUpdateModel.

shippet:
/I Manipulate opacity
partOpacities = csmGetPartOpacities(model);

/l Find parameter index.
targetindex = -1;

for(i = 0; i < parameterCount ;++i)

{
{

targetindex =i;
break;
}
}
//In case that the desired ID could n't be found ID
if(targetindex == -1)
{

return;

}

partOpacities[targetindex] = value;

}

if(stremp("ParamMouthOpenY",parameterlds]i]) ==

)

Link to the used API

csmGetPartOpacities

35

Copyright © 2025 Live2D Inc. all rights reserved.

- Applying the operation to the model.

After changing the opacity of a parameter or part, the operation must be reflected in the
vertex and opacity of the actual Drawable.

This operation is done by csmUpdateModel.

csmResetDrawableDynamicFlags () is needed to be called before csmUpdateModel () in
order to see which information necessary for drawing has been changed. For more details,
refer to "Resetting DynamicFlag"

shippet:

// Update model.
csmUpdateModel(Model);

The affected parts here are...
-csmGetDrawableDynamicFlags
-csmGetDrawableVertexPositions
-csmGetDrawableDrawOrders
-csmGetDrawableOpacities
-csmGetRenderOrders

Link to the used API

csmUpdateModel

csmGetDrawableDynamicFlags
csmGetDrawableVertexPositions

csmGetDrawableDrawOrders

csmGetDrawableOpacities
csmGetRenderOrders

36

Copyright © 2025 Live2D Inc. all rights reserved.

-Reset of DynamicFlag

csmResetDrawableDynamicFlags executes writing the difference of the value between
former one and current one to csmGetDrawableDynamicFlags

If this operation is skipped, only items of csmlisVisible will be updated by
csmGetDrawableDynamicFlags.

csmGetDrawableDynamicFlags needs to be called right before csmUpdateModel which will
be executed to rendering.

shippet:

/I Reset dynamic drawable flags.
csmResetDrawableDynamicFlags(Sample.Model);

Link to the used API

csmResetDrawableDynamicFlags

Rendering

-Necessary processes for rendering

For rendering, the following steps are necessary after the process for model.
-Updating Drawable vertices

-Updating opacity of Drawable

= Sorting drawing order

- Checking validity of Drawable if it is not valid rendering needs to be stopped.
-Mask processing

*Multiply color

- Screen color

Also, rendering in Cubism has elements such as composition of opacity of textures, additive
synthesis, multiplicative synthesis, culling, and invert the clipping mask or not.

When implementing rendering of the Cubism model, it is necessary to reproduce them in the
same way as Editor does.

37

Copyright © 2025 Live2D Inc. all rights reserved.

- Specification of rendering

Confirmation of Element with ConstantFlags

The synthesis method for each Drawable, on / off of culling, invert the clipping mask or not
can be obtained with csmGetDrawableConstantFlags.

For the meaning of the obtained Flag,please refer to the constants in Live2DCubismCore.h

shippet:
/** Bit masks for non-dynamic drawable flags. */
enum
{
/** Additive blend mode mask. */
csmBlendAdditive = 1 << 0,

/** blend mode mask. */
csmBlendMultiplicative = 1 << 1,

/** Double-sidedness mask. */
csmisDoubleSided =1 << 2

/**Clipping mask inversion mode mask. */
csmisinvertedMask = 1 << 3

|3

Either csmBlendAdditive or csmBlendMultiplicative will be applied.

Formula for color composition

When each color elements consists from 0.0 to 1.0 and D=RGBA(Drgb,Da) is set as color
data to render color data S=RGBA(Srgb,Sa) already contained in the rendering target,
render to calculate Output result O = RGBA (Orgb, Oa) gets

Normal synthesis
Orgb = Drgb x (1 — Sa) + Srgb
Oa = Da x (1 — Sa) + Sa

Additive synthesis
Orgb = Drgb + Srgb
Oa = Da

Multiplicative synthesis
Orgb = Drgb x (1 — Sa) + Srgb X Drgb
Oa = Da

38

Copyright © 2025 Live2D Inc. all rights reserved.

Note that Multiplicative, when rendering target is buffer with alpha rendering will be failed if
Multiplicative,Additive are applied on transparent background.

Culling direction and Drawablelndices

In Drawablelndices obtained from Core, counter-clockwise rotation is recognized as a
surface.
Adjust the culling control in accordance with the rendering API to use.

Specification of Clipping

Clipping needs to be done by multiplying alpha value after all masks were combined for the
rendering source.

In synthesis of multiple masks, opacity of Drawable is fixed as 1. Also, Normal synthesis is
always applied regardless of specification of the method of synthesis. The opacity of textures
needs to be applied.

Culling is applied in the same way as ordinary rendering method.

When the inverted mask of masked drawable is enabled, inverts the synthesized alpha
value. Please refer to "Apply mask on rendering" for more details.

- Confirmation of updated information

It may be helpful for acceleration of entire process that only items with changes such as
vertex coordinates, opacity, rendering order of Drawable gets updated. Updated items can
be obtained by csmGetDrawableDynamicFlags.

Checking DynamicFlag, updating vertex information and processing sort flag

shippet:
for (d = 0; d < csmGetDrawableCount(model); d++)

{
dynamicFlags = csmGetDrawableDynamicFlags(model);
isVisible = (dynamicFlags[d] & csmlsVisible) == csmlsVisible;

if ((dynamicFlags[d] & csmVertexPositionsDidChange) == csmVertexPositionsDidChange)

/* update vertexes */

}

/I Check whether drawables need to be sorted.
sort = sort ||
((dynamicFlags[d] & csmRenderOrderDidChange) == csmRenderOrderDidChange);

}
if (sort)

/* render order need sort */

39

Copyright © 2025 Live2D Inc. all rights reserved.

Following 6 are information obtained by csmGetDrawableDynamicFlags.

snippet:

/** Bit masks for dynamic drawable flags. */
enum
{
/** Flag set when visible. */
csmisVisible = 1 << 0,
I** Flag set when visibility did change. */
csmVisibilityDidChange = 1 << 1,
/** Flag set when opacity did change. */
csmOpacityDidChange = 1 << 2,
I** Flag set when draw order did change. */
csmDrawOrderDidChange = 1 << 3,
[** Flag set when render order did change. */
csmRenderOrderDidChange = 1 << 4,
I** Flag set when vertex positions did change. */
csmVertexPositionsDidChange = 1 << 5

Explanation about each flag

csmisVisible A bit is set when Drawable is displayed.

calculation result of the opacity of Drawable is 0 the bit
is put down.

Whether the parameter is outside the range of the key or

csmVisibilityDidChange A bit is raised when csmlsVisible changes from the
previous state.

csmOpacityDidChange A bit is raised when opacity of Drawable changed.

csmDrawOrderDidChange A bit is raised when draw order of Drawable changed.
Please note that it doesn't happen when the rendering
order changed.

csmRenderOrderDidChange A bit is raised when rendering order changes.
Rendering order needs to be sorted.

csmVertexPositionsDidChange | A bit is raised when the VertexPositions changes.

csmBlendColorDidChange A bit is raised when opacity of multiply color or screen

40

Copyright © 2025 Live2D Inc. all rights reserved.

color changed.

Note that it is not possible to determine whether the
multiply color or the screen color has been changed.

Flow chart of Flag Confirmation Process

App

Core

Framework

Updating pre-rendering process

Checking

P . . oy
[csmGetD DynamicFlags |
A _d

s

{ Checking DynamicFlag | |

which informationgetsupdated =~

csmOpacityDidChange is 1

\
csmGetDrawableOpacities j€——————
b

@ 4

Checking opacity

I 2

§ Updating Opacity)

I

Sorting

csmVertexPositionsDidChange is 1

(/ csmGetDrawableVertexCounts
L csmGetDrawableVertexPositions

{ Demand of vertex information |

csmRenderOrderDidChange of some Drawable is 1

Deformation of mesh

N
‘ csmGetRenderOrders b
. J

draworder

Demand of draw order

Sorting draw order

Getting

csmBlendColorDidChange of some Drawable is 1

“" csmGetDrawableScreenColors
_ csmGetDrawableMultiplyColors /

[B

the multiply colors and screencolors | |

Demand of multiply colors
and screen colors

—>{ Setting colors

v

Drawing model

0 /L\csmlsVisibIe is 1

A —
[csmGetD: ounts | (_ \
t\ AT R Y \‘ Getting mask information -".‘
(Process of Mask)
Clipping
y- R
{ Rendering)

.

!

To the next rendering cycle

Checking DynamicFlag

41

Copyright © 2025 Live2D Inc. all rights reserved.

Link to the used API

csmGetDrawableDynamicFlags

- Obtaining the updated vertex information

The updated vertex information is received and the information is copied to the renderer.
Updating the vertice information and opacity read at initialization is only necessary.

Updating the vertice information and opacity.

snippet:
// Initialize locals.
dynamicFlags = csmGetDrawableDynamicFlags(renderer->model)
vertexPositions = csmGetDrawableVertexPositions(renderer->Model);
opacities = csmGetDrawableOpacities(renderer->Model);

for (d = 0; d < renderer->DrawableCount; ++d)

{
/I Update 'inexpensive' data without checking flags.
renderer->drawables[d].Opacity = opacities[d];

/I Do expensive updates only if necessary.
if ((dynamicFlags[d] & csmVertexPositionsDidChange) ==
csmVertexPositionsDidChange))
{
//Updating vertex information to graphics
for(i = 0; i < renderer->drawables[d].vertexCount; ++i)
{
renderer->drawables[d].vertexPositons]i].x = vertexPositions[d][i].x;
renderer->drawables[d].vertexPositons][i].y = vertexPositions[d][i].y;

}

UpdateGraphicsVertexPosition(renderer->drawables[d]);

Copyright © 2025 Live2D Inc. all rights reserved.

Link to the used API

csmGetDrawableVertexPositions

csmGetDrawableDynamicFlags
csmGetDrawableOpacities

- Sorting drawing order

DrawOrder changes by the change of parameter. As a result, if the RenderOrder changed,
the calling order of the drawing needs to be changed.

DrawOrder and RenderOrder

The drawing order (DrawOrder) and the rendering order (RenderOrder) seem to be similar
but different.

The drawing order is the value to be referred to for determination of the order of drawing on
the art mesh on the Editor.

@ a8 ® © £ = Mesh lire color [#30308080

Mesh line thickne..
© i Head Gy
© i HairFront
(] o Hair Fromt 1 700 Inepector
o) N Hair Front 2 700

_— Mame Hair Front 2
(o] Hair Front 1 Mowvement
ID HairFront2
Lo Hair Front 2 Movement
Part HairFront w
© Hair Front 1 Deformer XY
Deformer Hair Front 2 Mowement w

o Hair Front 2 Deformer KY

Clipping ID
o Hair Front 2 Deformer 2

[Draw Order 00| =]
(o] w0 Evebrows
® Evebrow L 800 Opacity 100 |#
® /T Eyebrow R 800 Blend Mode |Normal |
L Evebrow L Deformer Culling []
[c] Evebrow B Defarmer b UzerData
o 200 Ewel ertices Info y- -
[c] » 10 EveR e -

W

The value output by csmGetDrawableDrawOrders is the value in Cubism Editor's inspector.
Calculation of drawing order group is not related.

The draw order that indicates the actual order of drawing Drawable and Offscreen, taking the

draw order group into account.
Call csmGetRenderOrders() to get this draw order.

43

Copyright © 2025 Live2D Inc. all rights reserved.

The array obtained from csmGetRenderOrders contains Drawable indices in the first half,
followed by Offscreen indices.

Return param oW N O=8L RenderOrder =
0 1 3 4 7 5 6 2

|

csmGetDrawableCount =7

il parts 3

500
500
600
500

— drawable 6
O drawable 5
.drawable4
wi= parts 2 offscreen
‘ drawable 2

R A .-

— drawable 2
wiE parts 1

(O drawable 1 1 500

@ dravablen 0 500

csmGetOffscreenCount = 1 Cubism Editor - Parts paletie

© 0 00000000

shippet:
renderOrders = csmGetRenderOrders(model);
drawableCount = csmGetDrawableCount(model);
offscreenCount = csmGetOffscreenCount(model);
totalCount = drawableCount + offscreenCount;

// Fetch and sort render orders.
for (d = 0; d < totalCount; ++d)
{

order = renderOrders]i];

if (d < drawableCount)

{
sortedObjects[order].Index = d;

sortedObjects[order].Type = DrawableObjectType Drawable;

}
else if (i < totalCount)
{
sortedObjects[order].Index = i - drawableCount;
sortedObjects[order].Type = DrawableObjectType_Offscreen;
}

}

Link to the used API

csmGetDrawableCount
csmGetDrawableDrawOrders
csmGetRenderOrders
csmGetOffscreenCount

44

Copyright © 2025 Live2D Inc. all rights reserved.

- Apply mask on rendering.

To find out which Drawable a Drawable is masked csmGetDrawableMaskCounts and
csmGetDrawableMasks is used.

csmGetDrawableMaskCounts[d] can obtain the information that how many Drawable for
masking d-th Drawable is masked with.

the number on array of i-th Drawable can be obtained csmGetDrawableMasks[d][i].

If there are multiple maskable Drawables, only alpha of each Drawable is synthesized.
To synthesize for mask, Normal synthesize needs to be always applied even if Additive or
Multiplicative are set as Blend mode of the Drawable.

Setting of culling needs to be set for synthesizing.

Even if a Drawable is used as a mask, sometime Drawable needs not to be displayed for
needs for expression. Therefore value of the opacity on the Drawable is not used to
synthesizing masks each other.

If the range of the alpha value is 0.0-1.0, by setting the alpha value of drawable for which
inverted mask is enabled to "1.0 - synthesized alpha value", draw clipping with the mask
inverted.

45

Copyright © 2025 Live2D Inc. all rights reserved.

Processing Mask in Drawing process and access to mask Drawable

snippet:

/* All of called functions in the following snippet are tentative. */

int d;

int drawableCount = csmGetDrawableCount(model);

const int *maskCount = csmGetDrawableMaskCounts(model);

const int **masks = csmGetDrawableMasks(model);

const csmFlags *dynamicFlags = csmGetDrawableDynamicFlags(model);
const csmFlags *constantFlags = csmGetDrawableConstantFlags(model);

for (d = 0; d < drawableCount; ++d)
{
/* When sorted rendering order has been stored by csmGetDrawableRenderOrder in
Sorters[d].RenderOrder. */
target = Sorters[d].RenderOrder;
if (maskCount[d] > 0)
{
I* Rendering when a mask exists. */
/* Reset mask buffe */
ResetMaskBuffer();

/* Change rendering target to mask buffa. */
RenderTarget(MASK);

/* Do the common setting for rendering mask. */
SetRenderingOpacity(1.0f); //Opacity needs to be fixed as 1.
SetRenderingMode(RENDER_MODE_NORMAL); //the method of synthesis needs to be
fixed as Normal.
for (i = 0; i < maskCount[target]; ++i)
{
int maskDrawablelndex = masks[target][i];
/* If maskDrawablelndex gets -1, the Drawable is not exported since it is hidden for example.
* In this case, rendering mask needs to be skipped. */
if(maskDrawablelndex == -1)

{

continue;

}

/* If csmVertexPositionsDidChange of DynamicFlag of mask is not put up vertex information is not available.
* In this case rendering mask needs to be skipped by continue. */

if ((dynamicFlags[maskDrawablelndex] & csmVertexPositionsDidChange) !=
csmVertexPositionsDidChange)

{

continue;

}

Drawable maskingDrawable = drawable[maskDrawablelndex];

[* Setting for mask needs to be used for setting of Culling and texture. */
SetCulling(maskingDrawable.culling);
SetMainTexture(maskingDrawable.texture);

46

Copyright © 2025 Live2D Inc. all rights reserved.

/* Rendering */

DrawElements();
}
I* Get rendering target to the normal buffer. */
RenderTarget(MAIN);

/* Specify each item of rendering of Drawable */
Drawable targetDrawable = drawable[target];
SetRenderingOpacity(targetDrawable.opacity);
SetRenderingMode(targetDrawable.renderMode);
SetCulling(targetDrawable.culling);
SetMainTexture(targetDrawable.texture);

bool isinvertedMask = (constantFlags[target] & csmlsinvertedMask) != csmlsInvertedMask;
/* Specify items which will use (if shader is different it needs to be specified on this step) */
/* Change the shader depending on inverting the mask or not */

SetMaskTexture(MASK, islnvertedMask);

/* Rendering */
DrawElements();

}

else

{
I*Rendering without mask*/
I* Specify each item for rendering of Drawable. */
Drawable targetDrawable = drawable[target];
SetRenderingOpacity(targetDrawable.opacity);
SetRenderingMode(targetDrawable.renderMode);
SetCulling(targetDrawable.culling);
SetMainTexture(targetDrawable.texture);

I* Specify "not" use of mask. */
SetMaskTexture(NULL);

/* rendering */
DrawElements();

Link to the used API

csmGetDrawableMaskCounts
csmGetDrawableMasks

47

Copyright © 2025 Live2D Inc. all rights reserved.

- Apply the multiply color and screen color to the
shader

Use csmGetDrawableMultiplyColors and csmGetDrawableScreenColors for the multiply
color and the screen color of a Drawable.

The multiply color set for the dth Drawable can be obtained by
csmGetDrawableMultiplyColors[d], and the screen color by
csmGetDrawableScreenColors[d].

Each color set for the dth Drawable can be obtained with the type csmVector4, where X
contains the value of R, Y the value of G, Z the value of B, and W the value of A.

If multiply color is not set, the initial value is set to (1.0f, 1.0f, 1.0f, 1.0f).
This initial value is set as a value that does not affect the original color, as each RGB value
is multiplied when applying the multiply color.

If screen color is not set, the initial value is set to (0.0f, 0.0f, 0.0f, 1.0f).
This initial value is set as a value that does not affect the original color, as each RGB value

is added when applying the screen color.

Gets the multiply color and screen color, and apply them to the shader

shippet:
/* All of called functions in the following snippet are tentative. */

/* multiply color */
const csmVector4d* multiplyColor = csmGetDrawableMultiplyColors(model);

[* screen color */
const csmVector4* screenColor = csmGetDrawableScreenColors(model);

/* Apply the multiply color and screen color to the shader */
CubismShader_OpenGLES2::Getlnstance()->SetupShaderProgram(
this, drawTextureld, vertexCount, vertexArray,
uvArray, opacity, colorBlendMode, modelColorRGBA,
multiplyColor[drawablelndex], // multiply color
screenColor[drawablelndex], // screen color
isPremultipliedAlpha, mpvMatrix, invertedMask

Link to the used API

csmGetDrawableMultiplyColors
csmGetDrawableScreenColors

48

https://docs.google.com/document/d/17p9YBY7-xuGA2n5xRpBhl2hWgACMGqnVzQPhVvBNFkE/edit?pli=1#bookmark=kix.rvei3zmv8usf
https://docs.google.com/document/d/17p9YBY7-xuGA2n5xRpBhl2hWgACMGqnVzQPhVvBNFkE/edit?pli=1#bookmark=kix.nmk8nu8dg9lw

Copyright © 2025 Live2D Inc. all rights reserved.

- Getting the parameter keys

Use csmGetParameterKeyCounts and csmGetParameterKeyValues to obtain the keys set
for the parameters.

The number of keys set for the dth Parameter can be obtained by
csmGetParameterKeyCounts[d].

The position of the ith key set for the dth Parameter can be obtained by
csmGetParameterKeyValues[d][i].

Gets the keys set for the parameters and the number of them

shippet:
/* All of called functions in the following snippet are tentative. */

/* Number of keys set for the parameters */
const int* keyCounts = csmGetParameterKeyCounts(_model);

/* Gets the position of each key set for the parameters */
const float** keyValues = csmGetParameterKeyValues(_model);

const csmChar** parameterlds =csmGetParameterlds(_model);
const csmint32 parameterCount = csmGetParameterCount(_model);

for (csmint32 i = 0; i < parameterCount; ++i)
{
printf("%s : %d\n", drawablelds]i], keyCounts]i]);
for (csmint32 j = 0; j < keyCounts[i]; ++j)
{
printf("3.1%f\n", keyValuesli][j]);
}
}

Link to the used API

csmGetParameterKeyCounts
csmGetParameterKeyValues

https://docs.google.com/document/d/17p9YBY7-xuGA2n5xRpBhl2hWgACMGqnVzQPhVvBNFkE/edit?pli=1#bookmark=kix.lzz1erwa8qq1
https://docs.google.com/document/d/17p9YBY7-xuGA2n5xRpBhl2hWgACMGqnVzQPhVvBNFkE/edit?pli=1#bookmark=kix.yvikohs0mre4

Copyright © 2025 Live2D Inc. all rights reserved.

-Determine whether repeat is set for a parameter

Use csmGetParameterRepeats to obtain the boolean value of whether repeat is set for a
parameter.

The repeat value set for the dth parameter can be obtained with
csmGetParameterRepeats[d].

Getting the repeat boolean value set for the parameters

shippet:
/* All of called functions in the following snippet are tentative. */

/* Getting the repeat boolean value set for the parameters */
const int* repeats = csmGetParameterRepeats(_model);

const csmChar** parameterlds =csmGetParameterlds(_model);
const csmint32 parameterCount = csmGetParameterCount(_model);

for (csmint32 i = 0; i < parameterCount; ++i)

{

/* Export the repeat boolean value */
if(repeatsli])

{

printf("%s : Repeat\n", parameterlds]i]);
else
{

printf("%s : Clamp\n", parameterlds]i]);
}

}

Link to the used API

csmGetParameterRepeats

50

Copyright © 2025 Live2D Inc. all rights reserved.

» Gets the information of offscreen

Use csmGetOffscreenCount to get the total number of offscreen set for the part.
Each setting value set for the dth offscreen can be obtained with csmGetOffscreenXXXX[d].

Gets each setting value for offscreen set for the part

snippet:
/* All of called functions in the following snippet are tentative. */

/* Gets the number of offscreen */
int offscreenCount = Core::csmGetOffscreenCount(_model);

/* Gets the blend mode of offscreen */
const csmint32* blendModes = Core::csmGetOffscreenBlendModes(_model);

/* Gets the opacity of offscreen */
const float* offscreenOpacities = csmGetOffscreenOpacities(_model);

/* Gets the index of the part that contains offscreen */
const csmInt32* ownerlndices = Core::csmGetOffscreenOwnerindices(_model);

/* Gets the multiply color of offscreen */
const Core::csmVectord* multiplyColors = Core::csmGetOffscreenMultiplyColors(_model);

I* Gets the screen color of offscreen */
const Core::csmVectord* screenColors = Core::csmGetDrawableScreenColors(_model);

[* Gets the number of masks referenced by offscreen */
const int* maskCount = Core::csmGetOffscreenMaskCounts(_model);

I* Gets the mask referenced by offscreen */
const csmInt32** masks = Core::csmGetOffscreenMasks(_model);

[* Gets the constant flag held by offscreen */
const csmFlags™ flags = Core::csmGetOffscreenConstantFlags(_model);

for (csmint32 i = 0; i < offscreenCount ; ++i)

{

/* Blend mode */
csmint32 blendMode = blendModesi];

/* Opacity */
float opacity = offscreenOpacities]i];

/* Part indices */
csmint32 ownerlndex = ownerlndicesli];

/* Multiply color */

51

Copyright © 2025 Live2D Inc. all rights reserved.

float multiplyR = multiplyColorsJi]. X;
float multiplyG = multiplyColorsi].Y;
float multiplyB = multiplyColors][i].Z;

/* Screen color */

float screenR = screenColors|i].X;
float screenG = screenColors]i].Y;
float screenB = screenColors]i].Z;

/* Clipping masks */
for(int j = 0; j < maskCount; ++j)
{

csmint32 mask = masksli][j];

}

/* Constant flags */
csmFlags flag = flags|i];

Link to the used API

csmGetOffscreenCount
csmGetOffscreenBlendModes

csmGetOffscreenOpacities
csmGetOffscreenOwnerlndices

csmGetOffscreenMultiplyColors
csmGetOffscreenScreenColors
csmGetOffscreenMaskCounts
csmGetOffscreenMasks

csmGetOffscreenConstantFlags

52

Copyright © 2025 Live2D Inc. all rights reserved.

Individual APls

Naming rule for the APls.

- SOA structure

If there is API called csmGet[XXXX]Count,
arrays obtained by API group of csmGet[XXXX][YYYY]s are stored in the same order.

For more details, please refer to_ "Loading and placement Drawable".

InPlace

CsmReviveMoclInPlace with InPlace and csminitializeModellnPlace indicates that they are
APls manipulate specified memory space.

For more details , please refer to "Release csmMoc or csmModel".

53

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetVersion

Return version information of The Core.

Argument

None

Return value

-csmVersion(unsigned int)

Notation of the versions consists of three parts: MAJOR, MINOR, and PATCH.
The followings are the rules for management of each part.

MAJOR version (1byte)
This is incremented when backward compatibility with model data (.moc3 file) has been lost
by, for instance, by major version up of Cubism Editor.

MINOR version (1byte)
This is incremented when new functions are added with backward compatibility kept.

PATCH number (2byte)
This is incremented when defect failure has been fixed.
If the MAJOR version or MINOR version is changed, the PATCH number is reset to 0.

Ox 00 00 0000
Major Minor Patch

Version consists of 4 bytes. Also, the newer version of the Core always indicates the bigger
number by treating it as unsigned integer.

ltem with description

How to obtain version information of the Core.

Available version
3.0.00 or higher

54

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetLatestMocVersion

Returns the new file version that Core can process.

Argument

None

Return value

-csmMocVersion(unsigned int)

ltem with description

File version of moc3

Available version
3.3.01 or higher

55

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetMocVersion

Returns the moc3 file version from the loaded memory of .moc3 file.

Argument

-void* address
The address of the head of the data array which includes .moc3.

-const unsigned int size
.moc3 is the length of the data array which includes .moc3.

Return value

-csmMocVersion(unsigned int)

/** moc3 file format version. */

enum

{
/** unknown */
csmMocVersion_Unknown = 0,
/** moc3 file version 3.0.00 - 3.2.07 */
csmMocVersion 30 =1,
/** moc3 file version 3.3.00 - 3.3.03 */
csmMocVersion 33 = 2,
/** moc3 file version 4.0.00 - 4.1.05 */
csmMocVersion 40 = 3,
/** moc3 file version 4.2.00 - 4.2.02 */
csmMocVersion_42 =4,
/** moc3 file version 5.0.00 - */
csmMocVersion_50 =5

|3

/** moc3 version identifier. */
typedef unsigned int csmMocVersion;

If the load is not a moc3 file returns the csmMocVersion_Unknown.

Please be careful that there is a possibility that the value more than the value defined in the

Live2DCubismCore.h will be got by the version-up of Cubism Editor.

To find the file version or that you can use, please be compared with the results of

csmGetlLatestMocVersion.

Item with description

File version of moc3

56

Copyright © 2025 Live2D Inc. all rights reserved.

Available version
3.3.01 or higher

csmGetLogFunction

Returns a pointer to the saved log function.

Argument

None

Return value

-csmLogFunction (address)

Types of log functions

snippet:
/** Log handler.

* @param message Null-terminated string message to log.
*/
typedef void (*csmLogFunction)(const char* message);

ltem with description

Output log of the Core.

Available version
3.0.00 or higher

57

Copyright © 2025 Live2D Inc. all rights reserved.

csmSetLogFunction

Specify function to output logs

Argument

-csmLogFunction handler

snippet:
/** Log handler.

* @param message Null-terminated string message to log.
*/
typedef void (*csmLogFunction)(const char* message);

Return value

None

ltem with description

Qutput log of the Core.

Available version
3.0.00 or higher

58

Copyright © 2025 Live2D Inc. all rights reserved.

csmReviveMocInPlace

Play the csmMoc structure in a memory that .moc3 file is loaded.
The address passed by address must satisfy the default alignment.

Description of the alignment size in the include file

shippet:
/** Alignment constraints. */
enum
{
/** Necessary alignment for mocs (in bytes). */
csmAlignofMoc = 64,

|3

The played csmMoc structure needs be released after all csmModels generated from
csmMoc has been released.

For more details, please refer to "How to load a Moc3 file and to expand up to the csmModel
object"

Argument

-void* address
The address of the head of the data array which includes .moc3
Alignment is necessary.

-const unsigned int size
.moc3 is the length of the data array which includes .moc3

Return value

csmMoc*
Address to csmMoc structure
It gets NULL when there is a problem.

ltem with description

How to load a Moc3 file and to expand up to the csmModel object

Available version
3.0.00 or higher

59

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetSizeofModel

It returns the size of the Model structure generated from the Moc structure.
This is used for securing memory.

Argument

=const csmMoc* moc
Address to Moc structure

Return value

~unsigned int
Size of Model structure

ltem with description

How to load a Moc3 file and to expand up to the csmModel object

Available version
3.0.00 or higher

60

Copyright © 2025 Live2D Inc. all rights reserved.

csminitializeModellnPlace

It initializes the Model structure by the Moc structure.
Prepare the aligned memory.

Description of the alignment size in the include file

snippet:
/** Alignment constraints. */
enum
{
/** Necessary alignment for models (in bytes). */
csmAlignofModel = 16

|3

Argument

=const csmMoc* moc
Address to Moc structure

void* address
Address of allocated memory

-const unsigned int size
Size of allocated memory

Return value

-csmModel*

Item with description

How to load a Moc3 file and to expand up to the csmModel object

Available version
3.0.00 or higher

61

Copyright © 2025 Live2D Inc. all rights reserved.

csmUpdateModel

It reflects the operation of parameters and parts on vertex information and so on.

Argument

csmModel* model
Address to model structure

Return value

None

ltem with description

Applying the operation to the model

Available version
3.0.00 or higher

62

Copyright © 2025 Live2D Inc. all rights reserved.

csmReadCanvasinfo

It returns the canvas size, center point and unit size of the model.

Argument

-const csmModel* model
Address to model structure

-csmVector2* outSizelnPixels
Address to csmVector 2 for storing model canvas size

-csmVector2* outOriginInPixels
Address to csmVector 2 to store the center point of the model canvas

:float* outPixelsPerUnit
Unit size of model

Return value

None

ltem with description

Get rendering size of model

Available version
3.0.00 or higher

63

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetRenderOrders

Returns the address of the array storing the draw order of Drawable and Offscreen
possessed by the model.

The order is the same as displayed in Cubism Editor.

The Offscreen order is stored at the end of the Drawable order.

The storing order of each object is in the order of their respective IDs.

The results of csmGetDrawableCount and csmGetOffscreenCount can be divided and
extracted.

Argument

»const csmModel* model
Address to model structure

Return value

-const int*
Address to the array containing the draw order

ltem with description

Loading and placement Drawable
Applying the operation to the model.
Sorting drawing order

Available version
5.3.00 or higher

64

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterCount

It returns the number of parameters owned by the model.

Argument

»const csmModel* model
Address to model structure

Return value

-int
Number of parameters to hold

ltem with description

Acquiring each element of the parameter

Available version
3.0.00 or higher

65

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterlds

It returns the array address which stores the ID of the parameter of the model.

Argument

»const csmModel* model
Address to model structure

Return value

-const char**
Address to the array where string address is stored

ltem with description

Acquiring each element of the parameter

Available version
3.0.00 or higher

66

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterTypes

It returns the array address containing the ID of the parameter of the model.

Argument

=const csmModel* model
Address to model structure

Return value

~const csmParameterType*
Address to the array where parameter types are stored

[** Parameter types. */

enum

{
/** Normal Parameter. */
csmParameterType Normal = 0,

[** Parameter for blend shape. */
csmParameterType_BlendShape = 1

|3

[** Parameter type. */
typedef int csmParameterType;

ltem with description

Acquiring each element of the parameter

Available version

4.2.02 or higher

67

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterMinimumValues

It returns an address to an array which stores only the minimum value of the parameter.

Argument

=const csmModel* model
Address to model structure

Return value

- const float*
Address to the array containing the minimum value

ltem with description

Acquiring each element of the parameter

Available version
3.0.00 or higher

68

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterMaximumValues

It returns an address to an array which stores only the maximum value of the parameter.

Argument

»const csmModel* model
Address to model structure

Return value

- const float*
Address to the array containing the maximum value

ltem with description

Acquiring each element of the parameter

Available version
3.0.00 or higher

69

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterDefaultValues

Ir returns an address to an array which stores only the default values of parameters.

Argument

=const csmModel* model
Address to model structure

Return value

- const float*
Address to the array containing the default value

ltem with description

Acquiring each element of the parameter
Operating parameters

Available version
3.0.00 or higher

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterValues

It returns an address to an array of just the current values of the parameters.

Manipulate the model by writing to this array.

Argument

csmModel* model
Address to model structure

Return value

- const float*
Address to the array where the current value is stored.

ltem with description

Acquiring each element of the parameter
Operating parameters

Available version
3.0.00 or higher

71

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterRepeats

Use csmGetParameterRepeats to obtain the boolean value of whether repeat is set for a
parameter.

Argument

-csmModel* model
Address to model structure

Return value

-const int*
Address to the array storing the repeat boolean value set for the parameters

ltem with description

Determine whether repeat is set for a parameter

Available version
5.1.00 or higher

72

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterKeyCounts

Address to the array storing the numbers of keys set for the parameters

Argument

=const csmModel* model
Address to model structure

Return value

-const int*
Address to the array storing the numbers of keys set for the parameters

ltem with description

Getting the parameter keys

Available version
4.1.00 or higher

73

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetParameterKeyValues

Returns the address to the jagged array storing the positions of keys set for the parameters.

Argument

=const csmModel* model
Address to model structure

Return value

-const float™*
Address to the jagged array storing the positions of keys set for the parameters

ltem with description

Getting the parameter keys

Available version
4.1.00 or higher

74

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetPartCount

It returns the number of parts the model.
http://docs.live2d.com/cubism-editor-manual/parts/

Argument

-const csmModel* model
Address to model structure

Return value

-int
Number of parts

ltem with description

None

Available version
3.0.00 or higher

75

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetPartlds

It returns the address to the array which stores the part ID of the model.

Argument

»const csmModel* model
Address to model structure

Return value

-const char**
Address to the array where string address is stored

ltem with description

None

Available version
3.0.00 or higher

76

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetPartOpacities

It returns the address to the array which stores the current value of the opacity of the part of

the model.

Argument

-csmModel* model
Address to model structure

Return value

-float*
Address of part opacity array

ltem with description

Operate parts opacity

Available version
3.0.00 or higher

77

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetPartParentPartindices

It returns the the parent of the parts by index in array.
If the parent of the part is Root, -1 will be stored

Argument

csmModel* model
Address to model structure

Return value

-const int*
Address of the array stored the index to the parent of the parts

ltem with description

Gets the parent parts of parts

Available version
3.3.00 or higher

78

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetPartOffscreenindices

Returns the address to the array storing the array position of offscreen set for the model
parts.

Argument

-csmModel* model
Address to model structure

Return value

-const int*
Address to the array storing the array position of offscreen set for the model parts

ltem with description

Gets whether offscreen is set for the part

Available version
5.3.00 or higher

79

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableCount

It returns the number of Drawables the model.

Argument

-const csmModel* model
Address to model structure

Return value

int
Number of Drawables the model has

ltem with description

Loading and placement Drawable
Sorting drawing order of Drawable

Available version
3.0.00 or higher

80

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawablelds

Returns the address to the array which stores the ID of the model possessed by the model.

Argument

=const csmModel* model
Address to model structure

Return value

-const char**
Address to the array where string address is stored

ltem with description

Loading and placement Drawable

Available version
3.0.00 or higher

81

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableConstantFlags

It returns the address to the array which stores the static flags of the Drawable possessed by

the model.

The flags described here contain the following four elements

flags regarding blend of rendering
*Add rendering

*Multiply rendering

flag for culling of Drawable
-Double-sided rendering

Flag of the mask of Drawable (Added since 4.0.0)

*Inverted mask

Argument

-const csmModel* model
Address to model structure

Return value

-const csmFlags*
Address for array of a flag

snippet:
[** Bitfield. */
typedef unsigned char csmFlags;

Item with description

Loading and placement Drawable

Available version
3.0.00 or higher

82

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableDynamicFlags

It returns the address to the array which stores the flags updated when drawable owned by

the model gets rendered.

The flags updated on rendering contain the following six elements.
- Visibility of rendering

-Change of visibility of rendering

-Change of opacity

-Change of rendering order

-Replacement of rendering order

-Vertex information update

Argument

»const csmModel* model
Address to model structure

Return value

-const csmFlags*
Address for the array of flag

shippet:
[** Bitfield. */
typedef unsigned char csmFlags;

ltem with description

Loading and placement Drawable
Applying the operation to the model
Confirmation of updated information
Obtaining the updated vertex information

Available version
3.0.00 or higher

83

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableTexturelndices

It returns the address of the array which stores the texture number referred to by the

drawable owned by the model.
The texture number means the number given to the texture atlas to which the art mesh

belongs.

Argument

-const csmModel* model
Address to model structure

Return value

-const int*
Address of the array containing the texture number

ltem with description

Loading and placement Drawable

Available version
3.0.00 or higher

84

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableDrawOrders

It returns the address for the array which stores the drawing order of the drawing possessed

by the model.

Based on the current parameter value, this value stores the interpolated calculation result.
The influence of the rendering order group is ignored.

Argument

»const csmModel* model
Address to model structure

Return value

-const int*

Address for the array containing the rendering order

ltem with description

Loading and placement Drawable
Applying the operation to the model
Sorting drawing order of Drawable

Available version
3.0.00 or higher

csmGetDrawableOpacities

It returns the address for the array which stores the opacity value of the Drawable

possessed by the model.

The value will be between 0.0 and 1.0.

Argument

=const csmModel* model
Address to model structure

Return value

- const float*
Address for array containing opacity

85

Copyright © 2025 Live2D Inc. all rights reserved.

ltem with description

Loading and placement Drawable
Applying the operation to the model
Confirmation of updated information
Obtaining the updated vertex information

Available version
3.0.00 or higher

86

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableMaskCounts

It returns an address to an array which stores the number of Drawable owned by the model.

Argument

-const csmModel* model
Address to model structure

Return value

-const int*
Address for the array containing the number of masks

ltem with description

Loading and placement Drawable
Apply mask on rendering

Available version
3.0.00 or higher

87

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableMasks

It returns the address of the jagged array which stores the Drawable number of the masks of
Drawable owned by the model.

Handle it carefully since 0 in csmGetDrawableMaskCounts contains address information
used in other masks in Drawable.

Argument

»const csmModel* model
Address to model structure

Return value

~const int**
Address for the array of addresses containing mask reference number

ltem with description

Loading and placement Drawable
Apply mask on rendering

Available version
3.0.00 or higher

88

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableVertexCounts

It returns the address for the array which stores the number of vertices of the drawable
possessed by the model.

Argument

-const csmModel* model
Address to model structure

Return value

-const int*
Address for an array containing the number of vertices of Drawable

ltem with description

Loading and placement Drawable
Apply mask on rendering

Available version
3.0.00 or higher

89

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableVertexPositions

It returns the address to the jagged array which stores the vertex of the drawable possessed

by the model.

Argument

»const csmModel* model
Address to model structure

Return value

-const csmVector2**
Address to jagged array to vertex information

snippet:
[** 2 component vector. */
typedef struct
{
[** First component. */
float X;

[** Second component. */
float Y;

}

csmVector2;

Item with description

Loading and placement Drawable
Applying the operation to the model
Confirmation of updated information
Obtaining the updated vertex information

Available version
3.0.00 or higher

90

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableVertexUvs

It returns the address to the jagged array which stores the UV information of Drawable
possessed by the model.

Since it corresponds to each vertex, the number of vertex get obtained with
csmGetDrawableVertexCounts.

Argument

-const csmModel* model
Address to model structure

Return value

-const csmVector2**
Address to jagged array to vertex information

ltem with description

Loading and placement Drawable

Available version
3.0.00 or higher

91

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawablelndexCounts

It returns the address of an array which stores the size of the corresponding number array of
polygons against the vertex of the model possessed by the model.

Since it becomes an array describing which corner of a triangle corresponds each vertex, the
value stored in this array always gets 0 or a multiple of 3.

Note that the size of Indices becomes zero at the end of skinning.

Argument

»const csmModel* model
Address to model structure

Return value

-const int*
address of an array that stores the size of the corresponding number array of polygons.

ltem with description

Loading and placement Drawable

Available version
3.0.00 or higher

92

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawablelndices

It returns the address to the jagged array which corresponds Drawable number of the
vertexes of Drawable owned by the model.

Each drawable has stored number which is independent.

Handle it carefully since 0 in csmGetDrawablelndexCounts contains address information
used in other Drawable.

Argument

-const csmModel* model
Address to model structure

Return value

-const unsigned short**
Address to the corresponding number of jagged array.

ltem with description

Loading and placement Drawable

Available version
3.0.00 or higher

93

Copyright © 2025 Live2D Inc. all rights reserved.

csmResetDrawableDynamicFlags

In order to refresh the information obtained by csmGetDrawableDynamicFlags at the next
csmUpdateModel, all flags needs to be taken down.
The timing for the call is right after the drawing process is over.

Argument

-csmModel* model
Address to model structure

Return value

None

ltem with description

Reset of DynamicFlag

Available version
3.0.00 or higher

94

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableMultiplyColors

Returns the address to the array storing the multiply colors of ArtMeshes.

Argument

-csmModel* model
Address to model structure

Return value

-const csmVector4*
Address to the array storing the RGBA values of the multiply color of ArtMeshes
X corresponds to R, Y to G, and Z to B (Value of W currently unused)

snippet:
/** 4 component vector. */
typedef struct
{
/** 1st component. */
float X;

/** 2nd component. */
float Y;

/** 3rd component. */
float Z;

/** 4th component. */
float W;
} csmVector4;

ltem with description

Getting the multiply colors and screen colors

Available version
4.2.00 or higher

95

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableScreenColors

Returns the address to the array storing the screen colors of ArtMeshes.

Argument

csmModel* model
Address to model structure

Return value

~const csmVector4*
Address to the array storing the RGBA values of the screen color of ArtMeshes
X corresponds to R, Y to G, and Z to B (Value of W currently unused)

shippet:
[** 4 component vector. */
typedef struct
{
/** 1st component. */
float X;

/** 2nd component. */
floatY;

/** 3rd component. */
float Z;

[** 4th component. */
float W;
} csmVector4;

ltem with description

Getting the multiply colors and screen colors

Available version
4.2.00 or higher

96

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableParentPartindices

It returns the the parent of Drawable by index in array.
If the parent of Drawable is Root, -1 will be stored.

Argument

-const csmModel* model
Address to model structure

Return value

-const int*
address of an array that stores the size of the corresponding number array of polygons.

ltem with description

Gets the parent parts of Drawable

Available version
4.2.02 or higher

97

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetDrawableBlendModes

Returns the address to the array storing the blend mode of the Drawable.

Argument

csmModel* model
Address to model structure

Return value

-const int*
Address to the array storing the blend mode of the Drawable

ltem with description

Gets the blend mode value

Available version
5.3.00 or higher

98

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenCount

Returns the total number of offscreen.
Returns 0 if offscreen is not set or the model is from version 5.2 or earlier.

Argument

-csmModel* model
Address to model structure

Return value

int
Total number of offscreen

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

99

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenBlendModes

Returns the address to the array storing the blend mode of offscreen.

Argument

csmModel* model
Address to model structure

Return value

-const int*
Pointer to the array storing the blend mode of offscreen.

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

100

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenOpacities

Returns the address to the array storing the opacity value of offscreen possessed by the
model.
The value ranges from 0.0 to 1.0.

Argument

csmModel* model
Address to model structure

Return value

- const float*
Pointer to the array storing the opacity value of offscreen

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

101

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenOwnerlndices

Returns the address to the array that stores the array positions of parts that have offscreen.

Argument

csmModel* model
Address to model structure

Return value

-const int*
Pointer to the array storing the array positions of parts that have offscreen

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

102

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenMultiplyColors

Returns the address to the array storing the multiply color of offscreen.

Argument

csmModel* model
Address to model structure

Return value

~const csmVector4*
Address to the array storing the RGB value of the multiply color of offscreen
X corresponds to R, Y to G, and Z to B (W value is currently unused)

shippet:
[** 4 component vector. */
typedef struct
{
/** 1st component. */
float X;

/** 2nd component. */
floatY;

/** 3rd component. */
float Z;

[** 4th component. */
float W;
} csmVector4;

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

103

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenScreenColors

Returns the address to the array storing the screen color of offscreen.

Argument

csmModel* model
Address to model structure

Return value

~const csmVector4*
Address to the array storing the RGB value of the screen color of offscreen
X corresponds to R, Y to G, and Z to B (W value is currently unused)

shippet:
[** 4 component vector. */
typedef struct
{
/** 1st component. */
float X;

/** 2nd component. */
floatY;

/** 3rd component. */
float Z;

[** 4th component. */
float W;
} csmVector4;

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

104

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenMaskCounts

Returns the address to the array storing the number of offscreen masks.

Argument

csmModel* model
Address to model structure

Return value

-const int*
Pointer to the array storing the number of offscreen masks

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

105

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenMasks

Returns the address to the jagged array storing the Drawable number of offscreen masks
possessed by the model.

Please be careful when handling this, as address information used for masks of other
Drawables is included even when csmGetOffscreenMaskCounts is 0.

Argument

-csmModel* model
Address to model structure

Return value

-const int**
Pointer to the array storing the number of offscreen masks

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

106

Copyright © 2025 Live2D Inc. all rights reserved.

csmGetOffscreenConstantFlags

Returns the address to the array storing the offscreen flags possessed by the model that are

not dynamically changed.

The flags described here consist of the following two elements:

- flag for reversing offscreen masks
- Reversed mask

- flag for offscreen culling
- Double-sided drawing

Argument

-csmModel* model
Address to model structure

Return value

-const int*
Address to the array of flags

snippet:
[** Bitfield. */
typedef unsigned char csmFlags;

ltem with description

Gets the information of offscreen

Available version
5.3.00 or higher

107

Copyright © 2025 Live2D Inc. all rights reserved.

csmHasMocConsistency

Checks the consistency of the .moc3 file
Prepare the aligned memory.

Argument
=const csmMoc* moc

Address to Moc structure

-void* address
Address of allocated memory
Alignment is necessary.

-const unsigned int size
Size of allocated memory

Return value

-int

.moc3 consistency.

1" if the loaded .moc3 is valid, otherwise '0".

ltem with description

How to load a Moc3 file and to expand up to the csmModel object

Available version
4.2.03 or higher

108

	
	
	
	
	
	Live2D Cubism Core
	API Reference
	
	Changelog
	Contents
	
	
	Overall
	Regarding this document
	Functional classification of Core and Framework
	・What is Core?

	How to render a model.
	・Data for rendering provided by Core
	・Cycles of Rendering and behavior of the Core

	How to use the API for each scene
	How to obtain the information related to the Core.
	・How to obtain the version information of the Core.
	・Output log of the Core.

	Loading files
	・How to load a Moc3 file and to expand up to the csmModel object
	・Check moc3 consistency
	・File version of moc3
	
	・Release csmMoc or csmModel
	・Get rendering size of model
	・Loading and placement Drawable

	Manipulate the model
	・Acquiring each element of the parameter

	
	・Getting the parent parts of parts
	・Operating parameters
	・Operating parts opacity.
	・Applying the operation to the model.

	
	・Reset of DynamicFlag
	Rendering
	・Necessary processes for rendering

	
	・Specification of rendering
	Confirmation of Element with ConstantFlags
	Formula for color composition
	Culling direction and DrawableIndices
	Specification of Clipping

	・Confirmation of updated information

	
	・Obtaining the updated vertex information
	・Sorting drawing order
	・DrawOrder and RenderOrder
	・Apply mask on rendering.
	・Apply the multiply color and screen color to the shader
	・Getting the parameter keys
	・Determine whether repeat is set for a parameter
	・Gets the information of offscreen

	Individual APIs
	Naming rule for the APIs.
	・SOA structure
	・InPlace

	
	csmGetVersion

	
	csmGetLatestMocVersion
	
	csmGetMocVersion
	csmGetLogFunction

	
	csmSetLogFunction

	
	csmReviveMocInPlace

	
	csmGetSizeofModel

	
	csmInitializeModelInPlace

	
	csmUpdateModel
	csmReadCanvasInfo
	csmGetRenderOrders
	csmGetParameterCount
	csmGetParameterIds

	
	csmGetParameterTypes

	4.2.02 or higher
	csmGetParameterMinimumValues
	csmGetParameterMaximumValues

	
	csmGetParameterDefaultValues
	csmGetParameterValues
	csmGetParameterRepeats

	
	csmGetParameterKeyCounts
	csmGetParameterKeyValues
	csmGetPartCount
	csmGetPartIds

	
	csmGetPartOpacities
	csmGetPartParentPartIndices
	csmGetPartOffscreenIndices
	csmGetDrawableCount
	csmGetDrawableIds

	
	csmGetDrawableConstantFlags

	
	csmGetDrawableDynamicFlags

	
	csmGetDrawableTextureIndices
	csmGetDrawableDrawOrders
	csmGetDrawableOpacities
	csmGetDrawableMaskCounts
	csmGetDrawableMasks
	csmGetDrawableVertexCounts

	
	csmGetDrawableVertexPositions

	
	csmGetDrawableVertexUvs
	csmGetDrawableIndexCounts
	csmGetDrawableIndices
	csmResetDrawableDynamicFlags
	csmGetDrawableMultiplyColors
	csmGetDrawableScreenColors

	
	csmGetDrawableParentPartIndices
	csmGetDrawableBlendModes
	csmGetOffscreenCount
	csmGetOffscreenBlendModes
	csmGetOffscreenOpacities
	csmGetOffscreenOwnerIndices
	csmGetOffscreenMultiplyColors
	csmGetOffscreenScreenColors
	csmGetOffscreenMaskCounts
	csmGetOffscreenMasks
	csmGetOffscreenConstantFlags
	csmHasMocConsistency

